03

深入了解物理世界的"规则",《图解中学物理》日本牛顿出版社
物理是探索隐藏在自然界中的“规律”的学问。今天,人类正在利用自己发现的“规律”向茫茫太空发射探测器,让汽车在世界各地飞驰,并用智能手机交换着各种信息。如果认为“物理太难”而对其敬而远之的话,那你就会错过了解能够改变我们生活“规律”的机会,那是多么可惜啊!(对毫无好奇心,只进化到动物摄取食物的那类,这段话谈不上有说服力。你得说,学好物理考上好大学找到好工作,有高薪可以吃好穿好住好······还可能光宗耀祖。)
向上投出的球不会飞向遥远的宇宙而会落回地面,这是因为球被地球“拽着”的缘故。月亮围绕地球运转也是同样的道理。(现在觉得这是多么简单的道理,但当初学的时候的艰涩的阴影还在。)

1、力与运动


在宇宙空间里,一旦开始运动,就停不下来!
NANA1977年发射的太空探测器“旅行者”仍然在惯性定律的作用下航行,继续向太阳系之外挺近(惯性飞行)。
惯性定律是意大利的Galileo和法国的Descartes在同一时期提出的(伽利略首先发现的)。颠覆了人类2000年来一直坚信不疑的“常识”---Aristotle无力则静。
不过伽利略认为,“如果没有外力作用的话,运动的物体将保持圆周运动”。笛卡尔给出更准确的结论,“如果没有外力作用的话,运动的物体将保持直线运动”。
正因为有外力作用于汽车,汽车才能加速行驶和转弯。(而匀直或静止是不需要的,如果也没有摩擦和引力的话。)
(牛顿第二定律是)能预知未来运动趋势的基本定律。
在失重的宇宙中,如何测量体重?宇航员坐到压缩的弹簧上,如果知道弹簧产生的力与运动员的加速度就可以计算其质量。(可以用简谐振动的周期来算呢?T=2\pi\sqrt{\frac{m}{k}}
跳伞的时候,地球也在被跳伞的人拽着。60Kg的人下降了1000米,地球上升不到氢原子核直径的十万分之一。

如果没有万有引力月亮大概会根据惯性定律沿直线飞出去,而实际上月亮被地球紧紧吸引着,就像链球被运动员抓在手里旋转而不会飞离一样。
与惯性定律的路径相比,月球在不断“坠向”地球。高速运动的月球在不断向地球“坠落”的同时,与地球的距离却几乎保持不变。(向心加速度的一种推导方法可以解释这个。[?])

1920年美国发明家Goddard提出利用火箭开展月球之旅的可能性,遭到《纽约时报》的严厉批评,被认为根本不可能。当时普遍认为“只要不向后推动空气,飞行器就不会向前飞行”。(离子发动机)(也不能总是批评那个“亩产万斤粮”的报纸,话说曾任英国皇家学会会长的开尔文勋爵就坚信比空气密度大的“飞机”不能飞起来。)
获诺贝尔物理学奖的小柴昌骏曾在一所中学担任过讲师,据说他在这所学校里曾提到过一个问题:“如果没有摩擦力,将会发生什么?”这个问题设想的答案是:“白纸”。如果没有摩擦力的话,铅笔会在纸上滑动而无法写下文字。

物体缓慢运动时,空气阻力与运动速度大致成正比,物体快速运动时,空气阻力与速度的平方成正比。也就是说,物体的运动速度越快,空气阻力越大。如果没有空气阻力,雨滴会一直加速下落,临近地面的速度甚至高达每小时200千米。(现在小的雨滴不超过1.6km/h)
牛顿力学标志着现代物理学的出现。在哈雷的一再劝说(资助)下,1687年出版了《自然哲学的数学原理》(法国物理学家库仑于1785年在《电力定律》提出库伦定律。)
白色光是无数色光聚集而成的光。(折射是分散开,就如人找到自我一样吧。)


不用很大的劲也能投出时速200千米的棒球。
地球自转使赤道表面的速率为1700km/h(0.463km/s)(爱因斯坦的相对性原理否定了“绝对参考系”(绝对空间)。 任何物理学实验都无法区分静止和匀速直线运动的参考系,一切物理学规律在惯性系中等价。 爱因斯坦把相对性原理推广到一切参考系,指出物理定律在一切参考系中都具有相同的数学形式,这就是相对性原理。

即使速率(speed 标量)没有增大或减小,速度的方向(行进方向)发生变化,也叫作加速运动。也就是说,加速运动时指速度(velocity 矢量)发生变化的一切运动。

(伽利略的假想实验)将重物和轻物系在一起下落会如何?(自相矛盾)
(伽利略)通过斜面实验发现了“自由落体”(自由落体不自由,就如学生在学校里学习的自由学习是在家长、老师的要求和监督下进行的。)
在伽利略之前,人们一直持有的是亚里士多德的看法,认为天上世界和地上世界是完全不同的两个世界,当时流行的天动说,认为天体的基本运动是以地球为中心的圆周运动,而地球上的物体,其本性是要回归到地球的中心(自然运动)。也就是说,(伽利略之前)当时根本就没有地球吸引物体的重力的概念
即使没有重力,乒乓球和炮弹也有差别。
“重量”是会因场所不同而改变的一个量。同一物体在地球上和月球上不同,空间站上,任何物体的重量都会为零。重量是作用在物体上的重力的大小。(是不是说示重呢)
“质量”则是表示“让一个物体运动起来的难度(加速难度)”的一个量。


(1586年,荷兰的斯蒂文在《静力学基础》一书中最早提出力的分解与合成原理)
产生摩擦力的原因主要是彼此接触的两个物体表面上原子相互间存在着作用力,而且同接触面的凸凹不平也有关系,不过,摩擦力的机制十分复杂,现在还没有完全搞清楚。
观测位置不同,可以有惯性力,也可以没有惯性力。(-ma)
地球是靠万有引力将大量尘埃聚集起来形成的。
离心力和万有引力的合力才是地球表面上物体所受的重力。除赤道和两极,物体下落的方向并不是指向地心,而是指向稍微偏离中心的某个位置。

点光源的发光强度也是符合平方反比定律的。小电珠发出的光想象为是从电珠发出的无数光线。(场线,这是万有引力同光的类似之处。)(引力场线和灯泡发出的光束有的一比)
抛出的球在它被抛出的一瞬间就开始了“下落”。月球的运动在万有引力的影响下时时刻刻都在改变行进的方向。实际的轨迹时时刻刻都要低于没有万有引力时的直线路径,也就是说,月球总在“下落”。
空间站内部并非没有万有引力。圆周运动也是一种加速运动。(前面也提到,这个说法很好。)

空间站内“无重力状态”,也许叫做“无重量状态”更好一些。
椭圆运动是比圆周运动更自然的天体运动。圆形轨道下落的幅度与地面下降的幅度相等。物体的速度无论稍微慢一点还是稍微快一点,物体下落的幅度和地面下降的幅度保持一致的平衡都会被打破,结果,物体运动的轨道变成椭圆。
棒球手感受到来自棒球的一种“动势”的撞击,棒球的速度决定了运动的动势,质量也是决定运动的动势的一个重要因素。(类比电动势,运动势是一个不错的概念。)在物理学中衡量运动动势大小的量叫做“动量”。

用力学术语来说,能量可以说是“能够产生力,使物体运动的潜在能力”。能量是“能够做功的潜在能力”。
(就如上图,向量差的形象描绘,生活中的杠杆的图示,下图也很清晰、准确。)(很佩服地喜欢日本的教参资料)

接近光速的速度加法运算:v=\frac{v_1+v_2}{1+\frac{v_1v_2}{c^2}}

2、气体与热
吸盘之所以能吸附在墙上,是因为被分子“摁着”的缘故。
如果分子和原子在某一温度下完全停止运动(?从量子力学角度也不是完全静止,那样的话位置就能确定了),从严格意义上说是“变成无法再降低能量的状态”。
研究认为,宇宙诞生之初,大爆炸时,宇宙的温度超过普朗克温度,我们已知的物理定律就会失效。这个普朗克温度1.4\times10^{32}K就是温度的上限。


1712年英国技术人员托马斯·纽科门首次研制成可供实用的蒸汽机。1769年技术人员詹姆斯·瓦特成功制造出效率更高的蒸汽机,从而开启了蒸汽机时代。
在通常情况下,把水加热为水蒸气后,体积会增大1700多倍。
波义耳也曾致力于永动机的研制,他设计了一款利用毛细现象的“波义耳永动机”(下图),永动机不能(持续)转动的原因[?]。

永动机是能够独立运转并源源不断地对外做功的设备,虽然地球在太阳的重力作用下一直围绕着宇宙空间运转,但地球并没有施加某种力让物体运转。

用汽车周围温度为20℃的空气加热让沸点15℃的液体沸腾产生蒸汽带动活塞。要想让蒸汽机再次做功,必须把蒸汽冷却为液体,因此,就需要温度低于液体15℃的空气。但汽车周围并没有这么低温度的空气。也就是说,这款汽车并没有地方可以散热。如果用冰箱这类的装置,就需要使用电等能量。
归根到底,上图这类汽车蒸汽机不能恢复到最初的状态而反复做功。
“热量可以从高温物体转移到低温物体,但不能自发地反向移动。”“即使能量的形式发生了变化,但其总量保持不变。”
“在众多的物理学领域中,热力学是最强大的理论。”“尽管不能破坏热力学定律,但可以巧妙地回避。”

3、波
救护车的警笛与宇宙膨胀之间令人意外的共同点
声源移动时,波长也将改变。
光在水中发生折射事因为光速变慢的缘故。


波长越长越容易发生衍射,但更准确的说法是,是否容易发生衍射在很大程度上取决于缝隙的宽度,以及障碍物与波长的比例。波长较短的光穿过与其波长相应的极小的缝隙时,也会大幅度地衍射。
声音还包括不是疏密波的振动,钢柱中能传播一种叫做s波的声音。
电磁波是一种能够激发电子振动的波。
红外线是分子在振动或旋转时产生的;可见光、紫外线和X射线是原子中的电子从上轨道落入下轨道时产生的;γ射线则是原子核从兴奋状态(激发态)返回到稳定状态时产生的。所有这些情形都伴随有带电荷粒子的运动,因而能够发出电磁波。
光在非金属物体表面上反射所产生的反射光大部分是振动方向平行于反射表面(物体表面)的偏振光。水面上的反射光,从某种意义上说已经不是原来的入射光。水分子吸收了入射光之后,在瞬间又再发光。反射光其实是无数水分子重新“再出发”的光。水分子中的电子在吸收了入射光之后,发生振荡,振荡电子再出发的事与其振荡方向相一致的偏振光。
振荡的电子发出的光总是沿着垂直于振荡方向的横方向进行的最多,而没有沿着纵向方向进行的光。电场和磁场总是交替地产生,振荡电流发出的电磁波,总是沿着垂直于电流振荡的横向方向进行的最多。就类似于浮在水面的小球上下振动而产生沿水面方向的水面波。

折射光线和反射光线垂直时,反射光是100%偏振光,满足此条件的入射角叫布儒斯特角。(tan\theta=n,入射光与水面夹角36°)
在地下传播的地震波分为Primary wave(初波),是纵波;Secondary wave(二次波)6.5km/s,是横波,比P波传播慢3.5km/s。
(穿越逆境,抵达繁星。)
任何复杂的波都客户以分解为许多“简洁波形”。
波之间的“碰撞”与物体之间的“碰撞”有很大的不同。(光和波一样,传播上具有独立性。)
多亏了反射,我们才能看到物体。

为什么电车的声音在晚上听得很清楚?
声波也具有像是光一样的折射现象(太阳光从外太空斜射入大气层,会像下偏折)。
白天,地面在太阳的照射下温度升高,贴近地面的空气也被地面加热变暖.由于声音在越热的空气中 传播速度越快,这样一来,声音就会向上传传播,所以声音在白天不容易传到远处。与此相反,进入夜晚后,高空的空气温度比地面空气温度高,这样一来,声音在高空中的传播速度就会变快,与白天相反,会向地面弯曲,结果,声音就很容易传到远处,我们也就能听到白天听不到的声音。

在宇宙空间无法看到通过眼前的光。天空为何是蓝色?晚霞为何是红色?

光的波长越短,越窑易受到空气分子的散射。这就意味着,太阳光中的紫色光和蓝色光窑易受到散射,当我们朝天窑的某个方向望去时,就会有比较多的蓝色或紫色光来到我们的眼睛。我们的眼睛对蓝色光比紫色光更敏感,所以天空看起来是蓝色的.

当出现晚霞时,太阳西沉正位于地平线附近的方向。这时,太阳光必须在大气层里通过更快的距离才 能够到达我们的眼睛。在太阳光进入大气层以后,由于蓝色光的波长比较短,容易被空气分子散射,其中的蓝色光在远处早早地就被散射衰黯掉了,在到这我们眼睛的太阳光中已经几乎没有什么蓝色光,我们看见的自然便是红色。

激光也是由驻波产生的。激光是由许多波长完全一致的光叠加而成的光。

4、电与磁
电与磁是非常相像的“兄弟”(没见到哪个双胞胎起名带电和磁的)
因电子移动受阻而产生热。沿着导线流动的电子与导线内的原子发生碰撞,其行进受到阻碍。这时,原子会振动,即产生热。电子的动能转化为热能。Joule heat.导线温度升高后,原子振动的更加剧烈,电子更容易撞击,即电阻更大。


电流以环形流动的话,则生成“磁铁的种子”。
超导电磁铁,即便关闭电源,线圈也能保持强大的磁场。
在日本,东部地区是50Hz,西部地区则是60Hz。东京使用了德国的发电机,打吧啧使用了美国的发电机。(海因里希·鲁道夫·赫兹)
(电介质是能够被电极化的绝缘体。在静电场中,电介质内部可以存在电场,这是电介质与导体的基本区别。)物质保存电的能力称为“介电常数”,介电常数\varepsilon越高,意味着物质越容易存储电。
物质产生磁的能力称为磁导率\mu,铁等容易变成磁铁的物质具有很强的磁导率。
c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}(真空的磁导率和真空的介电常数乘积不)

5、原子和光
如果光只是波,那就应该看不到稍远处的烛光。(光波随距离稀疏过快。)一个光子所携带的能量并不会随着光渐行渐远而减弱,而是保持不变。


电子在原子中有固定“住所”,如果认为“电子也具有波的性质”,就能够完美解释。

太阳中发生核聚变反应,质量之和大概减少了0.7%···爱因斯坦在1905年的相对论中提到E=mc^2
核裂变式核能发电的基础,反应后总质量大概减少0.08%

光(电磁波)就像一个个的“能量包”。
微观世界是由波支配的。

1934年,汤川秀树预言了把原子核结合在一起的力,就是“核力”。(短程力)

(快中子)(B班童鞋班服上是元素周期表上的元素,没有人选比结合能最大也是最稳定的Fe)

物理学的历史也是“力的统一”历史。艾萨克·牛顿17世纪创建的万有引力定律把作用于天体的力和地上的力统一起来了;詹姆斯·麦克斯韦在19世纪创立了电磁学,指明电力和磁力可以作为“电磁力”统一处理。


万物产生自“弦线”和波动?超弦理论把相对论和量子论整合到一起。
(物理教材的比较阅读完成了一些)
·[?](日本)图解中学物理
·[?](日本)浜島清利:热·电磁·原子
·[?](日本)浜島清利:力学·波动
·[?](日本)跟着物理学家学物理
·[?](台湾)物理教材比较阅读(翰林)5
·[?](台湾)物理教材比较阅读(泰宇)4
·[?](台湾)物理教材比较阅读(三民)3
·[?](台湾)物理教材比较阅读(龙腾)2
·[?](台湾)物理教材比较阅读(南一)1

25

‎

‎

‎

‎

‎

‎

·邴楚茗:浅谈约化质量与恢复系数[?]
·王聪方法[?]

16

‎


T[K]=273+t[℃]
(通过PV=nRT到三个气体定律)
气体压强微观模型的推导。(这部分和台湾有的教材类似)
定压变化、定积变化、断热变化

T(K)=273.15+t(^\circ C)
F_1 \frac{2L}{v_{1x}}=2mv_{1x}F_1=\frac{mv_{1x}^2}{L}P=\frac{F}{A}=\frac{Nm\bar{v_{x}^2}}{V}P=\frac{1}{3}\rho \bar{v^2}(气体压强后我们感受到的风力的关联因素)
\bar{E_k}=\frac{3PV}{2N}=\frac{3nRT}{2N}=\frac{3RT}{2N_0}=\frac{3}{2}kT(台湾教材翰林版[?])

设边长为L的立方体内,x方向单个气体分子动量变化2mv_x,时间t内碰撞次数\frac{v_xt}{2L}2mv_x\times\frac{v_xt}{2L}Ft=\frac{m\bar{v_{x}^2} t}{L}\times NF=\frac{Nm\bar{v_{x}^2}}{3L}P=\frac{F}{L^2}=\frac{Nm\bar{v_{x}^2}}{3V}
P=nRT=\frac{N}{N_A}RT\frac{1}{2}m\bar{v^2}=\frac{3}{2}\frac{R}{N_A}T=\frac{3}{2}kT
理想气体内能
U=N\times\frac{1}{2}m\bar{v^2}=\frac{3}{2}nRT
对于等压变化气体做功W=P\Delta V=nR\Delta T

电磁
k=\frac{1}{4\pi\varepsilon}N=\frac{kQ}{r^2}\times 4\pi r^2=4\pi kQ=\frac{Q}{\varepsilon}
法则(定律)\varepsilon诱電率诱電体的诱電率
\frac{1}{2}mv^2+qU=一定(类比重力势能的qV)

‎

(上图和很多网图相比那是相对精确了)
点电荷的电势类比万有引力,并用高度坡度下滑类比。
等电位面(等势面)
‎

(电容器内部填入导体的等效变形很漂亮的简化)
‎

电容的串并联图和电阻的等效变换一样(图很赞)
电容储存能量的公式
平行板电容器板间吸引力
假定上极板向上平移一小段距离,从电容器能量的变化考虑F\Delta d=\Delta U
\Delta U=\frac{Q^2}{2C'}-\frac{Q^2}{2C}=\frac{Q^2\Delta d}{2Cd}
综上,F=\frac{Q^2}{2Cd}
电子在导线中收到抵抗力f=kv,等速运动时,kv=qE,v=\frac{qE}{k}=\frac{qU}{kl},又由I=vnqSI=qnS`
透磁率
F=k_m\frac{m_1m_2}{r^2}(m[Wb])
安培力F=IBl
Z=\sqrt{R^2+(\omega L+\frac{1}{\omega C})^2}
‎

(这里一般习惯用U-I图像,通常用 E=U+IrE=U+2IrE=2U+Ir
磁场诱导(电磁感应)
诱导起電力U=vBl U=-N\frac{\Delta\Phi}{\Delta t}
电波、赤外线、可视光线...
特殊导线的磁场

原子
光电效果、限界振动数(台阶的图示很妙)
\frac{1}{2}mv_{max}^2=h\nu-W
光强增大,单位时间光子数增多(同一频率)
(光子打电子,平面动量守恒的正交分解,近似求解波长变化量,赞)
光子与电子的碰撞:
\frac{h}{\lambda}=\frac{h}{\lambda'}cos\theta+mv cos\phi
0=\frac{h}{\lambda'}sin\theta-mv sin\phi

‎

h\frac{c}{\lambda}=h\frac{c}{\lambda'}+\frac{1}{2}mv^2
(一系列化简和近似)\lambda'-\lambda=\frac{h}{mc}(1-cos\theta)

2dsin\theta=n\lambda干涉条件)
(氢原子波尔模型2\pi r=n\frac{h}{mv},然后推导出半径、能量与n^2反比)(里德常数推导)
\frac{mv^2}{r}=\frac{ke^2}{r^2}2\pi r=n\frac{h}{mv}r_n=\frac{h^2}{4\pi^2kme^2}\cdot n^2
U=-\frac{ke^2}{r}E=-\frac{ke^2}{2r}E_n=-\frac{2\pi^2k^2me^4}{h^2}\cdot \frac{1}{n^2}

(1u12gC12)1u=\frac{12\times10^{-3}}{N_A}\times \frac{1}{12}=\frac{1}{10^3N_A}kg
放射性崩壞原子番号
陽子(质子)、电子、陽电子、中性子(中子)E=mc^2\Delta E=\Delta mc^2
(经常出现保存则
质量银行,预金+现今=一定

‎

核分裂、核融合γ崩壊、质量欠损
基底状态、励起状态
(这本书对于α、β和γ在磁场和电场中偏转的图示不够准确。)(β偏转比较大)
合成公式(辅助角)asin\theta+bcos\theta=\sqrt{a^2+b^2}sin(\theta+\phi)
二次函数的日本化简挺好
ax^2+2b'x+c=0,解为x=\frac{-b'\pm\sqrt{b'^2-ac}}{a}
三角函数公式
‎

11

‎

大概读过五六个版本的台湾物理教科书,最近看了日本的,很是感慨。又要被叫秋桑了...
(少儿部学生写的标语,乾坤未定你我皆是黑马,乾坤已定,那就扭转乾坤。)
阿修罗之手、良问之风、名问之森

碰撞后速度,和切面平行方向不变u→u,垂直方向v→ev
不在一条直线上的速度变化量,先于力学的三角形定则2出现
绳的拉力这里叫张力
静摩擦系数\mu和动摩擦系数\mu',支持力和摩擦力的合力称抗力
对于弹簧弹力,用图示表明拉伸和压缩相同弹力大小相同;对于等效弹性系数这么好的结论自然不能错过,直列\frac{1}{k_T}=\frac{1}{k_1}+\frac{1}{k_2}+\cdot\cdot\cdot,并列...而且在简谐振动部分用到。(可和初中电阻、高中电容串并联等类比,甚至扩大到密度和速度)(用上我的通分子计算更快)
补充了浮力(几何光学中也特别讲了透镜)(浮力和透镜不能简单归为初中知识)
质心(\frac{m_1x_1+m_2x_2+\cdot\cdot\cdot}{m_1+m_2+\cdot\cdot\cdot},\frac{m_1y_1+m_2y_2+\cdot\cdot\cdot}{m_1+m_2+\cdot\cdot\cdot})
作用·反作用法则直接提供万有引力和库仑力的范例
研究对象这里是注目物体
拉两个物体和推两个物体,两物体见的作用力\frac{m_2}{m_1+m_2}(分母是没直接受外力的物体质量)
光滑水平面上m以v的初速度在M上表面滑行从相对运动计算(t=\frac{Mv_0}{(m+M)\mu g})(l=\frac{Mv_0^2}{2(m+M)\mu g})(相对静止的时间和相对滑行的距离从动量定理和摩擦生热,出现质量互换和摩擦增加的错觉)
机械能守恒定律---力学能保存则=一定(很好奇这里不用cons.)
运动量/动量 定理直接用向量方式

‎

运动量保存则(巧用平行四边形解释非对心碰撞)(此处应该配自己绘制的图)(力学的平行四边形定则到速度的合成再到动量的分解以及动量定理的运用和牛顿第三定律。)
反発系数在王聪方法上的应用(应该单独整理)
v_1=\frac{m_1-em_2}{m_1+m_2}v_0v_2=\frac{(1+e)m_1}{m_1+m_2}v_0\Delta E_k=\frac{1}{2}(1-e^2)\frac{m_1m_2}{m_1+m_2}v_0^2
(弹簧最大形变量的约化质量(类似等效电阻)求解\frac{1}{2}kl^2=\frac{1}{2}\frac{m_1m_2}{m_1+m_2}(v_1-v_2)^2
(对两物体的完全非弹性碰撞,m_1v_1+m_2v_2=(m_1+m_2)vv=\frac{m_1v_1+m_2v_2}{m_1+m_2},而质心的速度求解,x_G=\frac{m_1x_1+m_2x_2}{m_1+m_2}v_G=\frac{dx_G}{dt}=\frac{m_1\frac{dx_1}{dt}+m_2\frac{dx_2}{dt}}{m_1+m_2}=\frac{m_1v_1+m_2v_2}{m_1+m_2}
惯性力的引入使动力学问题转化为静力学问题(水平加速运动的车上的杯子中水面方向和等效重力垂直),而远心力的引入对有的圆周运动简化。
复原力(\omega=\sqrt{\frac{k}{m}}x=Acos\sqrt{\frac{k}{m}}t)
\frac{1}{2}mv^2+mgh+\frac{1}{2}kx^2=一定 \frac{1}{2}mv^2+\frac{1}{2}kx^2=一定 前者x为弹簧形变量,后者x为简谐振动的位移
水平振子有摩擦力的平衡位置跳动(需要再研究)
引力势能、力学能表达式...
粗细均匀的木棒在水中的简谐振动周期T=2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{h}{g}}(静止时没入的深度,用到浮力替换两个密度的关系,至此周期的专题应该拓展一个)
没有直接引入角动量守恒,用面积定律得出结论 \Delta S=\frac{1}{2}r(v\Delta t)sin\theta\frac{\Delta S}{\Delta t}=\frac{1}{2}rvsin\theta(此处圆锥曲线几何性质引入)
‎

纵波的疏部密部和横波的平衡位置对应的图示(很赞)(两相邻加强点距离\frac{1}{2}\lambda
定长波(驻波)
多普勒效应公式推导
(如果你说的东西给别人讲过多遍,那么这个观点才算是成熟的?)
f'=\frac{v\pm v_o}{v\mp v_s}f
f'为观察到的频率;
f为发射源于该介质中的原始发射频率;
v为波在该介质中的行进速度;
v_o为观察者相对于介质的移动速度,若接近发射源则前方运算符号为+号,反之则为−号;
v_s为发射源相对于介质的移动速度,若接近观察者则前方运算符号为−号,反之则为+号。
冲击波(shock wave)sin\theta=\frac{V}{v}
透镜成像的几何结论不应该两不管。

薄膜干涉天文间距\frac{\lambda}{2}=\Delta x tan\theta由于小角度,\Delta x=\frac{\lambda}{2\theta}
距离差到相位差的转换\lambda2\pi x→2\pi\frac{x}{\lambda}
时间差到相位差的转换T→2\pi t→2\pi\frac{t}{T}

‎

光程差2ndcos\theta
‎

07

‎

老赵当赠品一样送来,我也没好意思当面扔到垃圾桶里,但这种官文的确不受待见,心底是排斥什么考试大纲的应试指导文字的。最近读完三本书要继续整理高三备考的资料,正好随手翻了一下,有几句话写的还是有点真实的情绪,也就继续翻了下去。
一、高中物理课程改革的问题
知识与技能、过程与方法、情感态度与价值观三个维度构建了物理的课程目标。
初高中物理存在脱节现象,表现在物理学科与数学学科的衔接以及不同模块内容之间的衔接不好等方面。
初高中物理的台阶越来越大了。
初中要求感性的内容较多,理性思维与工具推导、方程求解等方面的内容接触少,而一开始就是运动学,就涉及一大堆公式,数学教学进度跟不上,几何、斜率与三角函数这部分应用太早。
普通学校的学生在学习矢量时感觉难度比较大。(杨振宁当年对圆周运动加速度的理解也是遇到很大苦难的。)
实验仪器是80年代的,一个班60人如何搞合作和探究的学习。(呵呵)
三、高中物理课程标准修订的背景
物理学有重要的教育价值,早在十七八世纪,欧洲一些国家的学校就将物理学科作为中学课程开发,在我国中学正式开设始于1902年。
(多次提到“立德树人”,有点滑稽。)
‎

教育说到底是为了学生的发展。学生的发展首先要依靠自身的基础和努力,学生需要了解自身的情况、存在的问题和努力的方向。学生的发展还要依靠教学活动,以及学校和教师的引导和帮助。
评价 evaluation,是一个以价值判断为核心的概念。其初意指的是一个收集证据进而判断价值并据此进行决策的过程,学业评价则是衡量学生学习是否符合预设的目标要求的过程。
进行教育评价最初的动力在于管理的需求;第二种需求是选拔。从根本上,评价还必须反应学生学习和发展的需求。
反思性评价,学生的自我反思和同伴互动;融入性评价,完全融入学习的过程,成为学生学习的一个有机成分。
弗拉维尔定义的元认知 metacognition 是一个人所具有的关于自己思维活动和学习活动的认知和监控。对认知的认知。

很多人批评高考是当前愈演愈烈的应试教育的根源,这是一种被表象迷惑了的认知。高考和应试教育没有必然的联系。全世界几乎所有国家都有高考,我国过去也有高考,也没看到哪个国家或者我国过去的哪个时期,出现类似近二三十年来的应试教育泛滥的现象。应试教育的根源不在高考本身,而是社会现实和思潮共同作用的结果。特别是急功近利思想的泛滥,使全社会都追求短期可见的成效。

(这一段有情绪的话,是让我有兴趣读一读这本书的起因。毕竟让我觉得是在说的人话。)
要对高考本身进行改革,关键在于淡化对升学率的追求,弱化急功近利的思想,提高职业道德和诚信水准。高凌飚2003

每年考试中出现的难题,考试后就有大量类似的题目出现,教师据此对学生进行针对性的强化训练。为了维持合适的区分度,下一年的考试就得出一些比上一年更难或是学生没有见过的生题。
年复一年,十年前的高考难题今天成为中等题甚至容易题。结果是高考试题的实际难度全面突破课程标准的要求,远远超出按常规教学所可能达到的程度。备考训练所要求的时间也就逐年增加。

四、高中物理学科核心素养解读
1996年联合国教科文组织发布《学习:财富蕴藏其中》的报告,界定了“学会求知、学会做事、学会共处、学会发展”四个终身学习的支柱,并于2003年又提出了第五个学习支柱---“学会改变”。
2013年教科文组织和美国布鲁金斯学会联合发布了《向普及学习迈进---每个孩子应该学什么》,提出了检测学生学习成果的七个维度,包括身体健康、社会情绪、文化艺术、文字沟通、学习方法和认知、数字与数学、科学与技术。
欧盟界定了八大核心素养:母语交流、外语交流、数学素养与科技素养、数字化素养、主动与创新意识、学会学习、社交与公民素养、文化意识与表达。
日本提出的21世纪能力包括基础能力、思维能力和实践能力。其中,思维能力是核心,基础能力是支撑思维能力的基础,实践能力是思维能力的使用。

在构建物理学科核心素养时,没有使用物理知识,也没有使用物理概念,而使用了物理观念。一方面,观念是概念和规律等在头脑中的提炼与升华;另一方面,中国文化中的观念与国际上的概念的内涵基本一致。
物理观念主要包括物质观念、运动观念、相互作用观念、能量观念及其应用。
21世纪之前重视概念发展、概念转变,到最近重视核心概念和概念进阶,都把科学概念学习作为科学教育的重要目标之一。
科学教育的目标不应是获得一大堆由事实和理论堆砌的知识,而应是实现一个趋向于核心概念的进展过程。
几乎所有国家和地区都将科学思维与创新列为课程目标。英国将“想法和证据”设定教育目标;西班牙将“论证能力”确定为学生必须具备的基本能力。国际学生评估项目对科学能力的评价包括认识科学问题、运用知识科学地解释现象、运动科学证据做决策并与他人交流。芬兰强调建模,澳大利亚强调建立模型的科学思维过程、分析、综合、评价等。韩国提出培养学生科学思考能力和创造性解决问题的能力,加拿大的科学课程目标之一是发展学生进行探究的技能、策略和思维习惯。
物理学科的核心素养主要由物理观念、科学思维、科学探究、科学态度与责任四个方面的要素组成。

科学认知的本质:世界是可以认识的,科学是可变的,科学不可能解决所有问题;科学研究的本质:科学讲究证据,科学是逻辑与想象相结合的产物,科学用于解释和预测,科学试图确定和避免偏见,科学反对权威;科学事业的本质:科学是一种负责的社会活动...

六、高中物理必修课程内容解读
伽利略是近代实验科学的的奠基人,他把科学实验和科学推理结合起来,在科学研究中开科学实验之先河...
机械能守恒定律解决问题的思路---建立的是两个状态的联系。
激光打印、静电喷雾和静电除尘。
极短时间(或极短位移)内的平均速度,视为物体在某时刻(某位置)的瞬时速度
打点计时器、光电门和频闪照相
探究向心力与半径、角速度和质量的关系
测量E和r的三个图(V-A A-R V-R)

麦克斯韦电磁理论是19世纪物理学的重要发现,是人类第一次把电、磁、光等现象统一起来。
推动感应电流的电场是从变化的磁场产生或激发的。
学生没办法解释变化的电场也能激发磁场,麦克斯韦当时就是根据对称性原理做了大胆的假设。
(出现了把动能当负数的班长童鞋)
1895年伦琴发现了X射线;1896贝克勒尔发现了元素放射性;1897年汤姆孙发现了电子。19世纪末三大物理发现。

教学是一个创造性的过程,教材是面对广泛的学习者编写的。

十二、高中物理课程发展趋势展望
科学教育研究者和工作者普遍认为,概念学习是科学教育的主要目标之一,是科学课程的核心内容。以往对概念学习的研究主要集中在概念发展、概念转变和概念图三个方面,研究主题几乎涉及科学的各个领域。进入21世纪以来,随着学习理论和学习科学的不断深入,核心概念和学习进阶的研究得到重视。基于核心概念和学习进阶,实现科学、技术与工程等的整合,是物理课程内容改革的主要趋势。
科学教育的目标不是去获得一大堆由事实和理论堆砌的知识,而应该是实现一个趋向于核心概念的进展过程,这样做有助于学生理解与他们的生活相关的事件和现象。

科学领域第一次正式提出学习进阶是在2004年《加拿大科学、数学和技术教育杂志》...美国国家研究理事会指出:“学习进阶是对学生连贯且逐渐深入的思维的描述。在较大的时间跨度内(6-8年),学生学习和研究某个概念或主题时,这些思维方式是以此进阶的。”

体现自主建构,融合探究、合作与论证学习
美国芝加哥大学教授施瓦布1961年首次提出探究教学的概念...皮亚杰指出了社会互动对认知冲突出现的重要性,维果茨基强调学生学习过程中合作与互动。
21世纪以来,科学论证已经逐渐成为科学探究最重要的特征,成为科学教育的研究热点和有效的教学策略。
论证品质1、论证过程只包含简短的主张;2、论证过程中带有数据、论证或支持的主张所组成,但不包含任何反驳;3、论证过程呈现一系列带有数据、证据或支持的主张,有时也呈现较为薄弱的支持性的反证;4、论证过程呈现一个主张及一个明确的反证,也可能同时具有一些主张或对立主张;5、论证过程呈现超过一个反驳的延伸性论证。

体现自我监控,重视反思与迁移
自我监控是主体将活动本身作为意识的对象,不断地对其进行积极主动地计划、检查、评价、反馈、控制和调节。自我监控能力不仅是教师教学能力的核心,而且是学生学习能力的核心,影响着教学过程和教学效果,也影响着学生创造性的发展。